2024
[14] J. Li#, H. Yang#*, L. Wang#, R. Li, Q. Liu, W. Wang, C. Sun, F. Zhou, X. Chen*, X. Wang*. Computational Sustainability of Soft Strain Sensor. In submission.
[13] H. Yang,# S. Ding,# J. Wang,# S. Sun, R. Swaminathan, S. W. L. Ng, X. Pan, G. W. Ho*. Computational Design of Ultra-Robust Strain Sensors for Soft Robot Perception and Autonomy, Nature Communications, 2024, 15, 1636. (ESI Highly cited paper)
[13] H. Yang,# S. Ding,# J. Wang,# S. Sun, R. Swaminathan, S. W. L. Ng, X. Pan, G. W. Ho*. Computational Design of Ultra-Robust Strain Sensors for Soft Robot Perception and Autonomy, Nature Communications, 2024, 15, 1636. (ESI Highly cited paper)
2023
[12] Q. Wang, S. Ofori, Q. Liu, H. Yu, S. Ding*, H. Yang*. Morphology Design of Soft Strain Sensors with Superior Stability for Wearable Rehabilitation Robots. International Conference on Intelligent Robotics and Applications. Singapore: Springer Nature Singapore, 2023: 576-583.
Before NPU
[11] H. Yang,# J. Li,# K. Z. Lim, C. Pan, T. V. Truong, Q. Wang, K. Li, S. Li, X. Xiao, M. Ding, T. Chen, X. Liu, Q. Xie, P. V. y Alvarado, X. Wang,* P.-Y. Chen*. Automatic Strain Sensor Design via Active Learning and Data Augmentation for Soft Machines. Nature Machine Intelligence. 2022, 4, 84-94.
[10] H. Yang,# J. Li,# X. Xiao,# J. Wang,# Y. Li, K. Li, Z. Li, H. Yang, Q. Wang, J. Yang, J. S. Ho, P.-L. Yeh, K. Mouthaan, X. Wang, S. Shah, P.-Y. Chen. Topographic Design in Wearable MXene Sensors with In-Sensor Machine Learning for Full-Body Avatar Reconstruction, Nature Communications, 2022, 5311.
[9] H. Yang; W. Wu. A Review: Machine Learning for Strain Sensor-Integrated Soft Robots, Frontiers in Electronic Materials, 2022, 2, 1000781.
[8] J. Yang,# H. Yang,# C. Ye, T. Li,* G. Chen, Y. Qiu*. Conformal Surface-Nanocoating Strategy to Boost High-Performance Film Cathodes for Flexible Zinc-ion Batteries as An Amphibious Soft Robot. Energy Storage Materials, 2022, 46, 472-481.
[7] H. Dong,# H. Yang,# S. Ding,# T. Li, H. Yu*. Bio-Inspired Amphibious Origami Robot with Body Sensing for Multimodal Locomotion. Soft Robotics, 2022, 9, 1198-1209.
[6] H. Yang, X. Xiao, Z. Li, K. Li, N. Cheng, S. Li, J. H. Low, L. Jing, X. Fu, S. Achavananthadith, F. Low, Q. Wang, P.-L. Yeh, H. Ren, J. S. Ho, C.-H. Yeow, P.-Y. Chen*. Wireless Ti3C2Tx MXene Strain Sensor with Ultrahigh Sensitivity and Designated Working Windows for Soft Exoskeletons. ACS Nano, 2020, 14, 11860.
[5] H. Yang,# B. S. Yeow,# Z. Li,# K. Li, T.-H. Chang, J. Lin, Y. Li, J. S. Ho, H. Ren, P.-Y. Chen*. Multifunctional Metallic Backbones for Origami Robotics with Strain Sensing and Wireless Communication Capabilities. Science Robotics, 2019, 4, eaax7020.
[4] H. Yang,# B. S. Yeow,# T.-H. Chang, K. Li, F. Fu, H. Ren*, P.-Y. Chen*. Graphene Oxide-Enabled Synthesis of Metal Oxide Origamis for Soft Robotics. ACS Nano, 2019, 13, 5410.
[3] H. Yang,# Z. Cheng,# C. Liu, W. Wu*, K. Zhang, S. Xu, Y. Liu, S. Cao*, Z. Li*. A Second-Order Nonlinear Optical Dendronized Hyperbranched Polymer Containing Isolation Chromophores: Achieving Good Optical Nonlinearity and Stability Simultaneously. Science China Chemistry, 2018, 61, 584.
[2] H. Yang,# F. Wang,# J. Zheng, H. Lin, B. Liu*, Y.-D. Tang*, C.-J. Zhang*. Super-quenched Molecular Probe Based on Aggregation-Induced Emission and Photoinduced Electron Transfer Mechanisms for Formaldehyde Detection in Human Serum. Chemistry–An Asian Journal, 2018, 13, 1432.
[1] H. Yang,# R. Tang,# W. Wu*, W. Liu, Q. Guo, Y. Liu, S. Xu, S. Cao*, Z. Li*. A Series of Dendronized Hyperbranched Polymers with Dendritic Chromophore Moieties in the Periphery: Convenient Synthesis and Large Nonlinear Optical Effects. Polymer Chemistry, 2016, 7, 4016.